Tatanama
Tatanama kimia merujuk pada sistem penamaan senyawa kimia. Telah dibuat sistem penamaan spesies kimia yang terdefinisi dengan baik. Senyawa organik diberi nama menurut sistem tatanama organik. Senyawa anorganik dinamai menurut sistem tatanama anorganik.
Atom
Atom adalah suatu kumpulan materi yang terdiri atas inti yang bermuatan positif, yang biasanya mengandung proton dan neutron,
dan beberapa elektron di sekitarnya yang mengimbangi muatan positif
inti. Atom juga merupakan satuan terkecil yang dapat diuraikan dari
suatu unsur dan masih mempertahankan sifatnya, terbentuk dari inti yang
rapat dan bermuatan positif dikelilingi oleh suatu sistem elektron.
Unsur
Unsur adalah sekelompok atom yang memiliki jumlah proton yang sama pada intinya. Jumlah ini disebut sebagai nomor atom unsur. Sebagai contoh, semua atom yang memiliki 6 proton pada intinya adalah atom dari unsur kimia karbon, dan semua atom yang memiliki 92 proton pada intinya adalah atom unsur uranium.
Ion
Ion atau spesies bermuatan, atau suatu atom atau molekul yang kehilangan atau mendapatkan satu atau lebih elektron. Kation bermuatan positif (misalnya kation natrium Na+) dan anion bermuatan negatif (misalnya klorida Cl−) dapat membentuk garam netral (misalnya natrium klorida, NaCl). Contoh ion poliatom yang tidak terpecah sewaktu reaksi asam-basa adalah hidroksida (OH−) dan fosfat (PO43−).
Senyawa
Senyawa merupakan suatu zat yang dibentuk oleh dua atau lebih unsur dengan perbandingan tetap yang menentukan susunannya. sebagai contoh, air merupakan senyawa yang mengandung hidrogen dan oksigen dengan perbandingan dua terhadap satu. Senyawa dibentuk dan diuraikan oleh reaksi kimia.
Molekul
Molekul adalah bagian terkecil dan tidak terpecah dari suatu senyawa kimia murni yang masih mempertahankan sifat kimia dan fisik yang unik. Suatu molekul terdiri dari dua atau lebih atom yang terikat satu sama lain.
Zat kimia
Suatu 'zat kimia' dapat berupa suatu unsur, senyawa, atau campuran
senyawa-senyawa, unsur-unsur, atau senyawa dan unsur. Sebagian besar
materi yang kita temukan dalam kehidupan sehari-hari merupakan suatu
bentuk campuran, misalnya air, aloy, biomassa, dll.
Ikatan kimia
Ikatan kimia merupakan gaya yang menahan berkumpulnya atom-atom dalam molekul atau kristal. Pada banyak senyawa sederhana, teori ikatan valensi dan konsep bilangan oksidasi dapat digunakan untuk menduga struktur molekular dan susunannya. Serupa dengan ini, teori-teori dari fisika klasik dapat digunakan untuk menduga banyak dari struktur ionik. Pada senyawa yang lebih kompleks/rumit, seperti kompleks logam, teori ikatan valensi tidak dapat digunakan karena membutuhken pemahaman yang lebih dalam dengan basis mekanika kuantum.
Wujud zat
Fase adalah kumpulan keadaan sebuah sistem fisik makroskopis
yang relatif serbasama baik itu komposisi kimianya maupun sifat-sifat
fisikanya (misalnya masa jenis, struktur kristal, indeks refraksi, dan
lain sebagainya). Contoh keadaan fase yang kita kenal adalah padatan,
cair, dan gas. Keadaan fase yang lain yang misalnya plasma, kondensasi
Bose-Einstein, dan kondensasi Fermion. Keadaan fase dari material
magnetik adalah paramagnetik, feromagnetik dan diamagnetik.
Reaksi kimia
Reaksi kimia adalah transformasi/perubahan dalam struktur molekul.
Reaksi ini bisa menghasilkan penggabungan molekul membentuk molekul
yang lebih besar, pembelahan molekul menjadi dua atau lebih molekul yang
lebih kecil, atau penataulangan atom-atom dalam molekul. Reaksi kimia selalu melibatkan terbentuk atau terputusnya ikatan kimia.
Kimia kuantum
Kimia kuantum secara matematis menjelaskan kelakuan dasar materi pada tingkat molekul.
Secara prinsip, dimungkinkan untuk menjelaskan semua sistem kimia
dengan menggunakan teori ini. Dalam praktiknya, hanya sistem kimia
paling sederhana yang dapat secara realistis diinvestigasi dengan mekanika kuantum murni dan harus dilakukan hampiran untuk sebagian besar tujuan praktis (misalnya, Hartree-Fock, pasca-Hartree-Fock, atau teori fungsi kerapatan, lihat kimia komputasi
untuk detilnya). Karenanya, pemahaman mendalam mekanika kuantum tidak
diperlukan bagi sebagian besar bidang kimia karena implikasi penting
dari teori (terutama hampiran orbital) dapat dipahami dan diterapkan
dengan lebih sederhana.
Dalam mekanika kuantum (beberapa penerapan dalam kimia komputasi dan kimia kuantum), Hamiltonan, atau keadaan fisik, dari partikel dapat dinyatakan sebagai penjumlahan dua operator, satu berhubungan dengan energi kinetik dan satunya dengan energi potensial. Hamiltonan dalam persamaan gelombang Schrödinger yang digunakan dalam kimia kuantum tidak memiliki terminologi bagi putaran elektron.
Penyelesaian persamaan Schrödinger untuk atom hidrogen memberikan bentuk persamaan gelombang untuk orbital atom, dan energi relatif dari orbital 1s, 2s, 2p, dan 3p. Hampiran orbital dapat digunakan untuk memahami atom lainnya seperti helium, litium, dan karbon.
Hukum kimia
Hukum-hukum kimia sebenarnya merupakan hukum fisika yang diterapkan dalam sistem kimia. Konsep yang paling mendasar dalam kimia adalah Hukum kekekalan massa yang menyatakan bahwa tidak ada perubahan jumlah zat yang terukur pada saat reaksi kimia biasa. Fisika modern menunjukkan bahwa sebenarnya energilah yang kekal, dan bahwa energi dan massa saling berkaitan. Kekekalan energi ini mengarahkan kepada pentingnya konsep kesetimbangan, termodinamika, dan kinetika.
Industri Kimia
Industri kimia adalah salah satu aktivitas ekonomi yang penting. Top
50 produser kimia dunia pada tahun 2004 mempunyai penjualan sebesar USD
$587 milyar dengan profit margin sebesar 8.1% dan penegluaran rekayasa
(research and development) sebesar 2.1% dari total penjualan kimia.
0 komentar:
Posting Komentar